SARS-CoV-2: Wie wird die Proteinfabrik der Zelle gekapert?
Etwas mehr als zwei Jahre sind seit dem Ausbruch des Coronavirus SARS-CoV-2 vergangen. Per 11.3. sind schon über 6 Millionen Menschen an der Krankheit verstorben (Quelle: Johns Hopkins). Um das Virus in Schach zu halten und seine pandemische Ausbreitung zu stoppen, stehen bislang hauptsächlich Impfstoffe zur Verfügung. Per 11.3. wurden bereits über 10,6 Mrd. Dosen weltweit verimpft. Diese vermögen derzeit die Übertragung des Virus jedoch nicht vollständig zu stoppen. Zudem ist damit zu rechnen, dass künftige Virusvarianten derart verändert sind, dass sie den Impfschutz umgehen können. Daher ist es von großer Bedeutung, das Virus und die Mechanismen, mit denen es Zellen infiziert, eigene Eiweißmoleküle herstellt und schließlich neue Viruspartikel produziert, besser zu verstehen. So lassen sich mögliche Angriffspunkte für die gezielte Therapie einer Infektion mit SARS-CoV-2 finden.
Wie wird die Proteinfabrik eingenommen?
Ein Forschungsteam um Dr. Marina Chekulaeva am Berliner Institut für Medizinische Systembiologie (BIMSB) des Max-Delbrück-Centrums für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) hat gemeinsam mit Kolleginnen und Kollegen des Leibniz-Instituts für Analytische Wissenschaften in Dortmund herausgefunden, wie das Virus die Proteinfabrik der Zelle für sich einnimmt – um virale Proteine zu synthetisieren, gleichzeitig die Produktion von körpereigenen Eiweißstoffen zu blockieren und so die Immunantwort der Wirtszelle auszuhebeln. Die Ergebnisse wurden kürzlich vorgestellt.
NSP1 im Visier
Schon länger hatten Forscher in diesem Zusammenhang ein virales Protein mit dem Kürzel NSP1 im Visier. Es ist das erste Virusprotein, das nach der Infektion der Wirtszelle entsteht. „NSP1 unterdrückt die Proteinproduktion der Zelle, ohne dabei die Synthese viraler Proteine zu beeinträchtigen“, sagt Marina Chekulaeva. „Darüber, wie das gelingt, gab es bislang sehr widersprüchliche Hypothesen. Wir haben beschlossen, diesen Mechanismus mit Lucija Buinic zu erforschen, der Erstautorin des Manuskripts. Sie hat während des Lockdowns in unserem Labor ihre Masterarbeit geschrieben.
Ribosom ist quasi blockiert
Marina Chekulaeva ist es mit ihrem Team gelungen, diesen Prozess aufzudecken. Bekannt war bereits, dass sich das NSP1-Protein an die Ribosomen heftet, die der Zelle als Proteinfabriken dienen. Genauer gesagt, verankert es sich im Tunnel, durch das die messenger-RNA (mRNA) in das Ribosom eintritt, damit die Bauanleitung abgelesen und schließlich in Proteine übersetzt werden kann. Dadurch ist das Ribosom quasi blockiert: Zelluläre mRNAs gelangen nicht mehr in die Proteinfabrik, die Synthese wichtiger zellulärer Eiweißmoleküle der Zelle kann nicht stattfinden. Das betrifft letztlich auch die Immunantwort, die auf diese Weise unterdrückt wird.
Virus nutzt einen „Passierschein“
Allerdings benötigen auch virale mRNAs Zugang zu den Proteinfabriken, damit letztlich neue Viruspartikel entstehen können. Wie aber umgehen diese die Blockade, die das Virus verursacht hat? Marina Chekulaeva und ihr Team haben festgestellt, dass dabei bestimmte Nukleotide in einer speziellen Struktur der viralen mRNA, der sogenannten Haarnadel oder Stammschleife, eine Rolle spielen. Diese Haarnadel scheint als eine Art Passierschein zu dienen: Sie interagiert mit NSP1, das dadurch den Weg in das Ribosom freigibt. Das virale Protein kann synthetisiert werden.
Drei mögliche Angriffspunkte
„Wir haben damit drei mögliche Angriffspunkte für die antivirale Therapie entdeckt“, sagt Marina Chekulaeva. Eine Möglichkeit wäre, das NSP1-Protein selbst anzugreifen, sodass es nicht mit dem Ribosom interagieren kann. Alternativ könnte die Interaktion zwischen dem NSP1-Protein und der viralen mRNA unterbunden werden. Dazu könnte man etwa die Stelle blockieren, an der NSP1 mit der Haarnadelstruktur interagiert.
Stabilisierte Oligonukleotide hergestellt
Es wäre auch denkbar, gezielt virale mRNA zu beseitigen. Chekulaeva und ihr Team haben dafür chemisch veränderte und dadurch stabilisierte Oligonukleotide hergestellt, die sich an die Haarnadelstruktur heften. So entsteht ein RNA-DNA-Hybrid, der von der Zelle beseitigt wird. Da diese Haarnadelstruktur spezifisch ist für virale mRNA, sei ein solcher Eingriff sehr spezifisch – die zelluläre mRNA und damit die Proteinsynthese der infizierten Zelle würden nicht beeinträchtigt. „Zudem handelt es sich um eine sehr wichtige Struktur, von der wir mit großer Wahrscheinlichkeit annehmen dürfen, dass sie kaum mutiert“, sagt Chekulaeva. „Eine Resistenzbildung wäre also eher unwahrscheinlich.“ Zumindest im Experiment in der Kulturschale seien alle drei Möglichkeiten denkbar. Welche davon sich letztlich für die Therapie eigne, müssten nun künftige Untersuchungen zeigen.
Quelle: idw/MDC
Artikel teilen