Chatbots in der Medizin: Zulassung als Medizinprodukt gefordert

Patientensicherheit in Gefahr?
ab
Large_Language_Models.jpg
© gguy/stock.adobe.com
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MT-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote.


Chat-Tools wie ChatGPT oder MedPaLM von Google haben großes medizinisches Potenzial, bergen aber speziell im Gesundheitsbereich enorme Risiken, wie Forschende aus Dresden zeigen. Wie lassen sich die Large Language Models regulieren?

Large Language Models (LLL) sind neuronale Netzwerke mit bemerkenswerten Konversationsfähigkeiten. Sie erzeugen menschenähnliche Reaktionen und führen interaktive Gespräche. Allerdings generieren sie oft äußerst überzeugende Aussagen, die nachweislich falsch sind oder unangemessene Antworten liefern. Derzeit ist es nicht möglich, die Qualität, Stichhaltigkeit oder Zuverlässigkeit der gegebenen Antworten zu überprüfen. „Diese Chatbots sind unsichere Werkzeuge, wenn es um medizinische Beratung geht und es ist notwendig, neue Rahmenbedingungen zu entwickeln, die die Patientensicherheit gewährleisten“, sagte Prof. Stephen Gilbert, Professor für Medical Device Regulatory Science am Else Kröner Fresenius Zentrum für Digitale Gesundheit an der TU Dresden. In einem aktuellen Nature-Medicine-Beitrag fordern er die Zulassung als Medizinprodukt.

Gefährliche Antworten von Dr. ChatGPT?

Die meisten Menschen informieren sich online über ihre Symptome, bevor sie ärztlichen Rat einholen. Suchmaschinen spielen im Entscheidungsprozess eine wichtige Rolle. Die bevorstehende Integration von LLM-Chatbots in Suchmaschinen könnte das Vertrauen der Benutzerinnen und Benutzer in die Antworten eines Chatbots, der menschliche Konversationen nachahmt, erhöhen. Es hat sich jedoch gezeigt, dass LLMs äußerst gefährliche Informationen liefern können, wenn sie mit medizinischen Fragen konfrontiert werden. Der zugrundeliegende Ansatz von LLM enthält kein Modell einer medizinischen „Grundwahrheit“, was gefährlich ist. Ground Truth ist eine Prozessmethode, die sicherstellt, dass die der Analyse zu Grunde gelegten Daten aktuell, präzise, vollständig und bestens gepflegt sind. LLMs mit Chat-Schnittstelle haben schon schädigende medizinische Antworten erzeugt und wurden bereits in Versuchen an Patienten, ohne deren Einverständnis, eingesetzt. Nahezu jeder medizinische LLM-Anwendungsfall erfordert in der EU und den USA eine behördliche Kontrolle. LLMs mit nachvollziehbaren Ergebnissen, geringer Verzerrung, vorhersagbar, korrekt und mit überprüfbaren Ergebnissen gibt es derzeit nicht.

Tools für behördliche Zulassung 

In diesem Nature-Medicine-Artikel beschreiben die Autoren die begrenzten Szenarien, in denen LLMs unter den aktuellen Rahmenbedingungen Anwendung finden könnten. Sie beschreiben, wie LLM-basierte Tools entwickelt werden können, die als medizinische Geräte zugelassen werden könnten, und sie untersuchen die Entwicklung neuer Rahmenbedingungen für die Sicherheit der Patienten. „Aktuelle LLM-Chatbots erfüllen nicht die wichtigsten Prinzipien für KI im Gesundheitswesen, wie Voreingenommenheitskontrolle, Erklärbarkeit, Aufsichtssysteme, Validierung und Transparenz. Um sich ihren Platz im medizinischen Repertoire zu verdienen, müssen Chatbots für eine höhere Genauigkeit konzipiert werden, wobei Sicherheit und klinische Wirksamkeit nachgewiesen und von den Aufsichtsbehörden genehmigt werden müssen“, schließt Prof. Gilbert.

Zusammenfassung:

  • Chatbots erfreuen sich großer Beliebtheit.
  • Im medizinischen Umfeld bergen sie aber ohne Regulierung große Risiken.
  • Es sind unsichere Werkzeuge, da sie Aussagen treffen können, die nachweislich falsch oder unangemessen sind.
  • Es ist noch nicht möglich, die Qualität, Stichhaltigkeit oder Zuverlässigkeit der gegebenen Antworten zu überprüfen.
  • Um sie im medizinischen Bereich einsetzen zu können, bedarf es neuer Regelungen.

 

Literatur:
Gilbert S, Harvey H, Melvin T, Large language model AI chatbots require approval as medical devices, Nature Medicine, 30 June 2023,  http://dx.doi.org/10.1038/s41591-023-02412-6, DOI: 10.1038/s41591-023-02412-6

Quelle: TU Dresden

Artikel teilen

Online-Angebot der MT im Dialog

Um das Online-Angebot der MT im Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige in der MT im Dialog schalten?

Stellenmarkt
Industrieanzeige