Automatisierte Hochdurchsatz-Sortierung lebender Zellen

Wichtig für personalisierte Medizin, Wirkstoffentwicklung und klinische Forschung
lz
LIFTOSCOPE vereint Hochgeschwindigkeitsmikroskopie, KI-Analyse und Lokalisation lebender Zellen und Zellverbände mit dem laserinduzierten Vorwärts-Transfer (LIFT)
Das LIFTOSCOPE vereint Hochgeschwindigkeitsmikroskopie, KI-Analyse und Lokalisation lebender Zellen und Zellverbände mit dem laserinduzierten Vorwärts-Transfer (LIFT). © Fraunhofer ILT, Aachen.
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MT-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote.


* Pflichtfeld

Ein neues KI-gestütztes Hochdurchsatzverfahren soll es ermöglichen, spezifische Zelltypen automatisiert zu isolieren. Zu sehen ist es auf der Analytica.

Pluripotente Stammzellen sind der Schlüssel zur personalisierten Medizin. Sie zeichnen sich durch die Fähigkeit aus, dass sie alle drei Keimblätter (Entoderm, Mesoderm und Ektoderm) hervorbringen können. Sie sind somit noch auf keinen bestimmten Gewebetyp festgelegt. Wenn es gelingt, sie aus Blut- und Gewebeproben zu isolieren, lassen sich daraus Zelltypen verschiedener Gewebearten nachzüchten. Diese Zellkulturen können dann individuelle Wirkstoff- und Unverträglichkeitstests außerhalb des Körpers ermöglichen und sie sind ein wertvolles Werkzeug bei der Entwicklung hochspezifischer personalisierter Therapien. Doch um die personalisierte Behandlung in der klinischen Routine zu etablieren, bedarf es effizienter Verfahren zum Isolieren der pluripotenten Stammzellen. Daneben ist auch die Pharmaforschung auf der Suche nach Verfahren, um so genannte High-Producer-Zellen für die Wirkstoffentwicklung aus polyklonalen Kulturen zu separieren und in monoklonale Kulturen zu transferieren, ohne die Zellvitalität oder Teilungsfähigkeit dabei zu beeinträchtigen. Auch Kliniken mussten in der Pandemie erkennen, dass die verfügbaren Verfahren zur Isolation und Analyse von (Immun-)Zellen aus Patientenproben ihre Labore an Kapazitätsgrenzen bringen.

Vorstellung auf der Analytica

Die Fraunhofer-Institute für Lasertechnik ILT und für Produktionstechnologie IPT stellen auf der Weltleitmesse für Labortechnik, Analytik und Biotechnologie, Analytica 2024, (9. bis 12. April 2024) ein Gerät vor, das dank vollautomatisierter Zellsortierung und -isolation für eine deutliche Effizienzsteigerung sorgen soll. Das LIFTOSCOPE integriert einen KI-gestützten Hochdurchsatzprozess in ein marktübliches inverses Mikroskop, das über eine Hochgeschwindigkeitskamera und eine Blitzlichtquelle verfügt. Um Zellen binnen Mikrosekunden zu identifizieren und mit Überlebensraten von über 90 Prozent auf Mikrotiterplatten zu transferieren, vereine das LIFTOSCOPE gleich drei Hightechprozesse in einem Gerät.

KI kann auf verschiedene Zellen trainiert werden

Das Projektteam hat den am Fraunhofer ILT entwickelten, patentgeschützten MIR LIFT-Prozess direkt in den Strahlengang des Mikroskops integriert. Ein daran angebundenes Kamerasystem liefert hundert hochaufgelöste Bilder pro Sekunde. In diesen Bilddaten soll dann die am Fraunhofer IPT entwickelte KI auf Basis semantischer Segmentierung die gesuchten Zelltypen identifizieren. Die KI könne hierfür auf das Erkennen von pluripotenten Stammzellen, ebenso wie von High-Producer-Zellen oder Immunzellen trainiert werden. Zudem ermittele die KI die exakte Position und Schwerpunkte der Zellen. Im MIR LIFT-Verfahren würden sie dann mit Raten von bis zu 100 Hertz eine nach der anderen auf eine Mikrotiterplatte transferiert. „Je nach Zelltyp überleben bis zu 100 Prozent aller Zellen diese Prozedur“, erklärt Dr. Nadine Nottrodt, Gruppenleiterin Biofabrikation, die das gemeinschaftliche Entwicklungsprojekt seitens des Fraunhofer ILT gemeinsam mit Projektleiter Richard Lensing begleitet.

Kombination mit fluoreszierenden Markern möglich

Das LIFT-Verfahren selbst ist recht einfach aufgebaut. Ein neun Nanosekunden kurzer Laserpuls mit wenigen Mikrojoule Pulsenergie genügt, um das flüssige Medium direkt unter der anvisierten Zelle zur Bildung einer Dampfblase anzuregen. Die zuvor enzymatisch aus ihrem Verbund gelöste Zelle wird von der Blase kurz angehoben. Sobald die Blase kollabiert, bildet sich ein Sog, der die Zelle in das Kulturgefäß der Mikrotiterplatte spült. „In den Proben sind die Zellen zufällig verteilt. Daher fährt unser System ein vorgegebenes Raster ab und transferiert Zellen, die sich jeweils im Umkreis von 50 Mikrometern um den Fokuspunkt befinden“, erklärt Lensing. Dort könne das LIFTOSCOPE die Zellen in dem hochpräzisen, optisch überwachten Laser-Prozess exakt ansteuern und transferieren. Bei Bedarf lasse sich der LIFT-Prozess mit fluoreszierenden Markern kombinieren, um spezifische Zellen zu identifizieren. Doch auch ohne Additive funktioniere das Verfahren robust. Die Gründe dafür: Einerseits gewährleiste die präzise Lokalisation durch die KI, dass die Zellen tatsächlich von dem Jet erfasst und in die Mikrotiterplatten befördert werden. Zum anderen sei es dem Fraunhofer ILT durch kontinuierliche Weiterentwicklung des LIFT-Verfahrens gelungen, die anfangs benötigten metallischen Absorber aus dem Prozess zu eliminieren. Durch den Einsatz eines Mid-Infrarot-Lasers mit 2.940 Nanometern Wellenlänge werde nun das ohnehin im System befindliche Wasser direkt angeregt, während die Polymere der Probenträger diese Wellenlänge nicht oder kaum absorbieren, betonen die Verantwortlichen.

Ziel sind zehn Minuten Gesamtprozesszeit

Das Projektteam verfolgt das Ziel, die vollautomatisierte Zellerkennung und den LIFT-Prozess im Sinne hoher Durchsätze zu verstetigen und die Gesamtprozesszeit für eine komplette Mikrotiterplatte auf zehn Minuten zu begrenzen. Das setze für die Bildgebung wie auch für die Positionierung des Laserfokus im Prozesstakt eine hochpräzise Aktorik voraus. Mit dieser werde einerseits die benötigte Bildauflösung für die KI-gestützte Zellerkennung und -vermessung und andererseits die auf 25 Mikrometer genaue Positionierung des Laserfokus direkt unterhalb der Zelle gewährleistet. Binnen 200 Mikrosekunden sei ein Einzelzelltransfer abgeschlossen. Innerhalb von 100 Sekunden ließen sich mit dem LIFTOSCOPE 10.000 Zellen ansteuern und auf die Mikrotiterplatten transferieren.

Alternative zum Stop-and-Go-Betrieb

Das Fraunhofer Team hat zwei unterschiedliche Strategien zur Bewegung der Zellkultur verfolgt. „Im Stop-and-Go-Betrieb ist vor und nach dem Zell-LIFT eine kurze Ruhephase einzulegen, weil jeder Halt hydrodynamische Strömungen in der Probe auslöst, die sich vor dem nächsten Zelltransfer erst beruhigen müssen“, berichtet Nottrodt. Zwar erlaube diese Strategie das Sortieren von Proben mit vielen verschiedenen Zellen und senke dadurch den Aufwand der Probenaufbereitung. Doch die Pausen gehen zulasten der Effizienz. Im kontinuierlichen Prozess, dem zweiten Ansatz, fahre das LIFTOSCOPE die Probenträger in einem je nach gesuchtem Zellentyp definierten Raster von bis zu 1.600 Linien mit 50 Mikrometern Abstand ab – und transferiere in dieser fortlaufenden Bewegung jede Zelle, die in den Fokus gerate. Der Zeitvorteil dieser Methode wachse, je mehr Zellen transferiert werden. Schon bei 10.000 transferierten Zellen sei der kontinuierliche Prozess mehr als doppelt so schnell, bei 100.000 Zellen bereits um ein 20-Faches schneller als der Stop-and-Go-Betrieb.

100 Zellen pro Sekunde erreichbar?

Das neue KI- und Laser-basierte Verfahren weise den Weg zu einer vollautomatisierten, hocheffizienten Isolierung von lebenden Zellen. Laut Nottrodt zeigt der bisherige Projektverlauf, dass eine Synchronisation des Zell-LIFTs mit der Bildfrequenz der Highspeed-Kamera – und damit eine Einzelzellsortierung von 100 Zellen pro Sekunde erreichbar ist. Im nächsten Schritt gehe es darum, das prototypische Verfahren zur Marktreife zu entwickeln. „Interessierte können sich auf dem Gemeinschaftsstand der Fraunhofer-Gesellschaft in Halle A3/407 der Analytica 2024 gern ein genaueres Bild vom LIFTOSCOPE machen“, laden Nottrodt und Lensing ein. Mit Blick auf das Potenzial der personalisierten Medizin sei es wünschenswert, dass diese Technologie schnell den Weg in die medizinische, pharmazeutische und klinische Praxis finde.

Quelle: Fraunhofer-Institut für Lasertechnik ILT

Artikel teilen

Online-Angebot der MT im Dialog

Um das Online-Angebot der MT im Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige in der MT im Dialog schalten?

Stellenmarkt
Industrieanzeige