Adipositas-Risikobestimmung: Weg vom klassischen BMI?

Kombination von KI und Lipid-Forschung
lz
Alternative zu traditionell gemessenen BMI-Werten
Traditionell gemessene BMI-Werte und aus Lipidomik-Daten berechnete BMI-Werte im Vergleich. Gerl et al. Machine learning of human plasma lipidomes for obesity estimation in a large population cohort
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MT-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote.


Mit Hilfe von künstlicher Intelligenz (KI) wurde eine Reihe von Lipidmolekülen identifiziert, die wesentlich mehr Informationen über Adipositas bereithalten als der klassische Body Mass Index (BMI). Im Alltag der Medizin ist der BMI bisher ein beliebtes Instrument um Übergewicht und Fettleibigkeit zu ermitteln.

Die Warnungen der WHO werden lauter. Fast jeder sechste Erwachsene ist inzwischen von Fettleibigkeit (Adipositas) betroffen. Da Adipositas das Sterblichkeits- und Krankheitsrisiko erhöht, ist sie eine der zentralen Bedrohungen für die Gesundheit der gesamten Menschheit. Nach wie vor ist der klassische Body Mass Index (BMI), das Verhältnis von Gewicht zur Körpergröße, ein beliebtes Instrument um Übergewicht und Fettleibigkeit zu ermitteln. In einem Zusammenschluss von akademischer Forschung und Industrie in Sachsen, geleitet von Wissenschaftlern aus Dresden, stellt ein internationales Forscherteam nun ein neues Konzept für personalisierte Präzisionsmedizin vor. Mit Hilfe von künstlicher Intelligenz (KI) wurde eine Reihe von Lipidmolekülen identifiziert, die wesentlich mehr Informationen über Adipositas bereithalten als der BMI.

Daten von 1.000 Patienten ausgewertet

Forscher vom Biotechnologischen Zentrum (BIOTEC) der TU Dresden und der Lipotype GmbH, einer Ausgründung des Max-Planck-Instituts für Molekulare Zellbiologie und Genetik in Dresden, in internationaler Kooperation mit Wissenschaftlern der Universität Lund (Schweden) und des National Institute for Health and Welfare (Finnland) haben sich zusammengeschlossen, um den BMI von über 1.000 Patienten einer kritischen Neubewertung zu unterziehen. Das internationale Forscherteam wandte fortgeschrittene KI-Methoden an, um einen Algorithmus zu entwickeln, der als Bewertungsgrundlage die Lipid-Zusammensetzung des menschlichen Blutplasmas nutzt, das sogenannte Plasma-Lipidom.

Indikatoren für die Stoffwechselgesundheit

Das Plasma-Lipidom enthält hunderte unterschiedlicher Lipidmoleküle. „In ihrer Gesamtheit dienen sie wie ein Fingerabdruck des Wohlbefindens als Indikatoren für die Stoffwechselgesundheit“, erklärt Mathias Gerl von Lipotype. Solche Lipidomik-Daten wurden genutzt, um den Algorithmus zur BMI-Bestimmung zu entwickeln.

Im Vergleich zu der auf Haushaltswaren beruhenden „traditionellen BMI-Messung“ ermöglichten die Lipidomik-Daten dem neuen Algorithmus die Erstellung eines molekularen „Lipidomik-BMI“. Die BMI-Berechnung über den Lipidomik-BMI deckte auf, dass für jeden siebten Patienten der molekulare BMI deutlich über den zuvor mit der traditionellen BMI-Messung ermittelten Werten lag. Im Vergleich zum traditionellen BMI trifft der Lipidomik-BMI außerdem erweiterte Aussagen über den Adipositas-Zustand, wie zum Beispiel über die Menge des viszeralen Fettgewebes, einer Form von gesundheitsschädlichem Fett.

Forderung nach multidimensionalen Indikatoren

„Wenn ein Patient, welcher eine Therapie zur Bekämpfung von übergewichtsbedingten Krankheiten benötigt, ohne Abhilfe und Beratung nach Hause geschickt wird, kann dies Langzeitschäden zur Folge haben“, gibt Olle Melander von der Universität Lund zu bedenken. „Genau dies sind die Patienten, welche plötzlich mit 40 Jahren einen Herzinfarkt erleiden und ihre Hausärzte ratlos zurücklassen“, kommentiert Carlo Vittorio Cannistraci vom BIOTEC (TU Dresden) und fügt hinzu: „Wir sollten diese veraltete Sichtweise überwinden, dass ein einziger Indikator – wie das Verhältnis von Gewicht zu Körpergröße – die Bestimmung von Risiken in komplexen Systemen wie dem Menschen ermöglichen kann. Rechnergestützte Biomedizin nutzt künstliche Intelligenz, um auf vielen Variablen basierende multidimensionale Indikatoren zu ermitteln, welche die Diagnosegenauigkeit erhöhen. Deshalb hoffe ich, dass der herkömmliche BMI durch einen Lipidomik-BMI ersetzt wird und die falsche Klassifizierung von jedem siebten Patienten beendet.“

Literatur:

Mathias J Gerl, Christian Klose, Michal A Surma, et al.: Machine learning of human plasma lipidomes for obesity estimation in a large population cohort. PLOS Biology. DOI: 10.1371/journal.pbio.3000443.

 Quelle: Technische Universität Dresden

Artikel teilen

Online-Angebot der MT im Dialog

Um das Online-Angebot der MT im Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige in der MT im Dialog schalten?

Stellenmarkt
Industrieanzeige