3Cs-Multiplex-Technik zur Erforschung von Krebs-Mutationen

Erweiterte Anwendung der CRISPR-Cas-Technologie
lz
CRISP_Cas9_NIH_www_genome_gov_22042016.jpg
NIK, www.genome.gov
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MT-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote.


* Pflichtfeld

Eine erweiterte Anwendung der CRISPR-Cas-Technologie ermöglicht das Team um den Biochemiker Dr. Manuel Kaulich. Damit soll in der Zellkultur die Wirkung genetischer Veränderungen in zwei beliebigen Genen gleichzeitig untersucht werden.

Krebs und viele andere Erkrankungen beruhen auf Gendefekten. Häufig kann der Körper den Ausfall eines Gens kompensieren; erst die Kombination mehrerer genetischer Fehler führt zum Krankheitsbild. Eine Möglichkeit, Millionen solcher Kombinationen von Gendefekten zu simulieren und ihre Auswirkungen in der Zellkultur zu untersuchen, bietet jetzt die an der Goethe-Universität Frankfurt entwickelte 3Cs-Multiplex-Technik auf Basis der CRISPR-Cas-Technologie. CRISPR-Cas ist eine „Genschere“, die es erlaubt, gezielt Gene einzuschleusen, zu entfernen und auszuschalten. Dazu werden kleine Erbgut-Schnipsel („single guide RNA“) als „Adresse“ genutzt, die die Genschere zu bestimmten Abschnitten der DNA leiten, wo die Genschere dann aktiv wird.

Erweiterung der 3Cs-Technik

Zur Entwicklung der 3Cs-Multiplex-Technik erweiterten Wissenschaftlerinnen und Wissenschaftler vom Institut für Biochemie II der Goethe-Universität ihre vor drei Jahren entwickelte und patentierte 3Cs-Technik. 3Cs steht für covalently-closed circular-synthesized, weil die für CRISPR-Cas eingesetzten RNA-Elemente dabei mit Hilfe einer kreisförmigen Synthese generiert somit einheitlicher verteilt sind. Mit einer ganzen Bibliothek solcher RNA-Ringe lässt sich jedes beliebige Gen in einer Zelle gezielt adressieren, um es zu verändern oder auszuschalten.

Gleichzeitige Manipulation zweier Gene

Die neue 3Cs-Multiplex-Technik erlaubt nun sogar die gleichzeitige Manipulation zweier Gene in einer Zelle. Biochemiker Dr. Manuel Kaulich von der Goethe-Universität Frankfurt erläutert: „Wir können ‚Adress‘-RNA-Bibliotheken für alle denkbaren Zweier-Kombinationen von Genen herstellen. Damit lassen sich bis zu mehreren Millionen Kombinationen gleichzeitig in einem Experiment testen.“

Bislang war der Aufwand für solche Experimente sehr hoch; die neue Technik der Arbeitsgruppe reduziert ihn einschließlich der Kosten um den Faktor Zehn. Denn das Team kann die Adress-Bibliotheken dank der neuen 3Cs-Multiplex-Technik sehr einheitlich und qualitativ hochwertig herstellen. „Durch die mäßige Qualität der bislang verfügbaren CRISPR-Cas-Bibliotheken mussten immer sehr große Experimente durchgeführt werden, um entstehende Fehler statistisch auszugleichen“, so Kaulich.

Autophagie-Mutationen untersucht

Am Beispiel von verschiedenen an Abbauprozessen beteiligten Genen zeigte die Arbeitsgruppe das Potenzial der neuen 3Cs-Multiplex-Technik: Sie untersuchte knapp 13.000 Zweierkombinationen von Genen, die für Recyclingprozesse (Autophagie) in der Zelle verantwortlich sind. Mit deren Hilfe baut die Zelle „ausgediente“ Zellbestandteile ab und verwertet sie. Störungen der Autophagie können Zellwucherungen auslösen.

„Mit der 3Cs-Multiplex-Technik konnten wir zum Beispiel zwei an der Autophagie beteiligte Gene identifizieren, deren Ausschalten zu einem unkontrollierten Wachstum von Zellen führt“, erklärt Kaulich. „Genau diese Autophagie-Mutationen kommen bei jedem fünften Patienten mit einem Plattenephithelkarzinom der Lunge vor. Auf diese Weise können wir in Zellkulturexperimenten sehr effizient nach Genen suchen, die bei Krebs oder auch Krankheiten des Nerven- und Immunsystems eine wichtige Rolle spielen und die sich als mögliche Ziele für Therapien eignen.“

Die Arbeitsgruppe der Goethe-Universität hat ihre Entwicklungen über die universitäre Technologietransfer-Tochter Innovectis zum Patent angemeldet. Das aus dem Institut für Biochemie II unter Beteiligung von Manuel Kaulich ausgegründete Start-up-Unternehmen Vivlion GmbH bietet die Nutzung der Technologie bereits auf dem Markt an.

Literatur:

Valentina Diehl, Martin Wegner, Paolo Grumati, et al.: Minimized combinatorial CRISPR screens identify genetic interactions in autophagy. Nucleic Acids Research, gkab309, DOI: doi.org/10.1093/nar/gkab309.

Quelle: idw/Goethe-Universität Frankfurt am Main

Artikel teilen

Online-Angebot der MT im Dialog

Um das Online-Angebot der MT im Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige in der MT im Dialog schalten?

Stellenmarkt
Industrieanzeige