Kraftwerke der Zelle weiter ausspioniert

Grundlagenforschung
Kli
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MT-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote.


Grundlagenforschung zur Energiegewinnung der Zelle: Erstmals erklären Göttinger Forscher, wie zwei unabhängige Systeme der Proteinbildung miteinander verknüpft sind.

Störfälle in den Kraftwerken der Zelle (Mitochondrien) bringen die Energieproduktion aus dem Gleichgewicht, zudem machen sie krank. Die Folge können schwere Erkrankungen des Nervensystems und des Herzens sein, die häufig tödlich verlaufen. Göttinger Grundlagenforscher um Peter Rehling, Direktor des Instituts für Zellbiochemie an der Universitätsmedizin Göttingen (UMG), untersuchen deshalb unter anderem, wie genau die Kraftwerke in Zellen zusammengebaut werden

Ihre neuesten Erkenntnisse klären bisher unbekannte Details zum Zusammenbau der Proteine zu der zentralen Atmungskette. Sie könnten helfen, Defekte oder Störungen im Maschinenpark der Energiekraftwerke der Zelle besser zu erkennen oder vielleicht sogar zu reparieren. Der Europäische Forschungsrat (ERC) fördert die Göttinger Forschung über Zellkraftwerke seit 2014 durch einen ERC Advanced Investigator Grant. Die jüngsten Ergebnisse sind veröffentlicht in der wissenschaftlichen Zeitschrift „Cell“.

Hintergrundinformationen

Die Kraftwerke der Zelle, die Mitochondrien, wandeln Energie aus der Nahrung in eine allgemeingültige Energiewährung, das ATP, um. Für die Herstellung von ATP besitzt jede Zelle Miniaturkraftwerke, also einen hochentwickelten Maschinenpark. Die dafür notwendige Maschinerie wird „Atmungskette“ genannt, weil der Prozess der ATP-Produktion circa 95 Prozent des Sauerstoffs benötigt, den wir täglich einatmen.

Die Atmungskette ist aus einer großen Vielzahl von einzelnen Proteinen (Eiweißmolekülen) zusammengebaut. Mitochondrien haben eigenes Erbgut, das Informationen für den Zusammenbau einiger Proteine der Atmungskette enthält. „Die überwiegende Zahl von Proteinen, die in der Atmungskette ihren Dienst tun, wird allerdings außerhalb der Mitochondrien synthetisiert und von Genen, die sich in unserem Zellkern befinden, kodiert. Sie müssen, nachdem sie hergestellt wurden, vom Zellraum in die Mitochondrien transportiert werden und dort die Proteine finden, die in den Mitochondrien selbst gemacht werden“, sagt die Erst-Autorin der Publikation, Ricarda Richter-Dennerlein vom Institut für Zellbiochemie der UMG.

Forschungsergebnisse im Detail

Woher wissen die Mitochondrien eigentlich, wie viel Protein sie selbst herstellen müssen, um keinen Überschuss zu produzieren? Wie gelingt es den Mitochondrien, eine ausbalancierte Menge an Proteinen zu produzieren, die dann mit den Proteinen, die von außen kommen, zum Maschinenpark zusammengebaut werden können?

Die Wissenschaftler am Institut für Zellbiochemie der UMG haben herausgefunden, dass Ribosomen in den Mitochondrien Proteine nur teilweise synthetisieren und dann eine Pause einlegen. Erst wenn Proteine, die von außerhalb der Mitochondrien stammen, in die Mitochondrien importiert werden, fangen die Ribosomen wieder an zu arbeiten und stellen das vollständige Protein in den Mitochondrien her. Auf diese Weise kann sichergestellt werden, dass ein Protein, das in den Mitochondrien entsteht, nur dann wirklich hergestellt wird, wenn sein Partner, der von außen in die Mitochondrien hinein transportiert wird, vorhanden ist.

Die Untersuchungen der Arbeitsgruppe erklären damit erstmals, wie zwei unabhängige Systeme der Proteinbildung, eines außerhalb der Mitochondrien und eines innerhalb der Mitochondrien, miteinander verknüpft sind. Diese Untersuchungen sind von besonderer Bedeutung, da Defekte bei der Ausbildung der Atmungskette zu schweren und oft tödlich verlaufenden Erkrankungen des Nervensystems und des Herzens führen können.

Literatur:

Ricarda Richter-Dennerlein, Silke Oeljeklaus, Isotta Lorenzi, Christin Ronsör, Bettina Bareth, Alexander Benjamin Schendzielorz, Cong Wang, Bettina Warscheid, Peter Rehling, Sven Dennerlein. Mitochondrial Protein Synthesis Adapts to Influx of Nuclear-Encoded Protein. CELL, Volume 167, Issue 2, p471–483.e10, 6 October 2016. DOI: http://dx.doi.org/10.1016/j.cell.2016.09.003



Quelle: Universitätsmedizin Göttingen - Georg-August-Universität, 01.11.2016

Artikel teilen

Online-Angebot der MT im Dialog

Um das Online-Angebot der MT im Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige in der MT im Dialog schalten?

Stellenmarkt
Industrieanzeige