Arbeitet das Kleinhirn anders als angenommen?

Live aus dem Kleinhirn
lz
Aufbau des Kleinhirns
Der typische Aufbau des Kleinhirns findet sich bei Fischen (Bild) genauso wie bei Säugetieren. MPI für Neurobiologie/Knogler
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MT-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote.


Wo die verschiedenen sensorischen und motorischen Informationen im Wirbeltier-Kleinhirn abgebildet werden, untersuchen Wissenschaftler des MPI für Neurobiologie am Modell des Zebrafisches. Nun zeigt sich, dass das Kleinhirn wahrscheinlich anders arbeitet als angenommen.

Alle Wirbeltiere haben ein Kleinhirn. Die Bedeutung dieses Hirnbereichs zeigt sich nicht zuletzt dadurch, dass Kleinhirn-Körnerzellen mehr als die Hälfte aller Nervenzellen im Wirbeltiergehirn ausmachen. Zu den Aufgaben des Kleinhirns gehören die Koordination von Bewegungen, das Erlernen und die Feinabstimmung von Bewegungsabläufen, das Kalibrieren der Reflexe und möglicherweise auch höhere kognitive Prozesse wie Emotionen. Obwohl seine Bedeutung für all diese Bereiche und auch die Anatomie und Verbindungen des Kleinhirns bekannt sind, ist seine Arbeitsweise in vieler Hinsicht immer noch unklar. So gibt es nur Theorien dazu, wie eingehende Informationen der verschiedenen Quellen im Kleinhirn von den Körnerzellen organisiert und integriert werden.

Zahl der Körnerzellen macht die Erfassung schwierig

Körnerzellen bilden die Input-Schicht des Kleinhirns und sollen Informationen über externe Reize, aktuelle Körperposition und momentane Bewegungen übermitteln. Obwohl Körnerzellen die häufigsten Zellen im Wirbeltiergehirn sind, gestaltet sich das Aufzeichnen der Zellaktivität jedoch als äußerst schwierig. Dies liegt daran, dass bereits ein kleines Säugetiergehirn wie das der Maus viele hunderttausend Körnerzellen besitzt, die über einen recht großen Hirnbereich verteilt sind. So kann die Aktivität immer nur von einem Teil der Zellen zeitgleich in einem Tier erfasst werden.

Zebrafisch ermöglicht Untersuchung aller Körnerzellen

Im Fachjournal Current Biology berichten Laura Knogler und ihre Kollegen aus der Forschungsgruppe von Ruben Portugues am Max-Planck-Institut für Neurobiologie nun von ihren Ergebnissen zur Kleinhirnaktivität in den kleinen und durchsichtigen Zebrafischlarven. Mit der Wahl dieses Tiermodells war es den Wissenschaftlern erstmals möglich die Aktivität aller Körnerzellen in einem wachen, sich verhaltenden Wirbeltier zu untersuchen. „Der große Vorteil beim Zebrafisch ist, dass sein Gehirn weniger als einen Quadratmillimeter groß ist und uns fluoreszierende Proteine durch ihr Aufleuchten zeigen können, welche Nervenzellen aktiv sind“, erklärt Laura Knogler. Die Ergebnisse der Studie fasst sie wie folgt zusammen: „Wir waren überrascht, dass mit fast 50 Prozent sehr viele Körnerzellen des Kleinhirns bereits auf einen einzelnen, einfachen Stimulus reagierten – und einige Nervenzellen nur dann aktiv waren, wenn der Fisch schwamm.“

Geglaubtes Wissen gründlich überdenken

Ruben Portugues, der Leiter der Forschungsgruppe, erklärt, warum diese Ergebnisse so unerwartet waren: „Seit den frühen 1970er Jahren gingen Wissenschaftler davon aus, dass einzelne sensorische Reize nur sehr wenige Körnerzellen aktivieren. Das können wir nicht bestätigen.“ Der Neurobiologe erklärt weiter, dass es noch viel zu lernen gibt darüber, wie Körnerzellen sensorische Reize und Bewegungen kodieren: „Zusammen mit den Erkenntnissen einiger kürzlich veröffentlichter Studien zeigen unsere Ergebnisse, dass wir unser geglaubtes Wissen über die Funktion des Kleinhirns noch einmal gründlich überdenken müssen.“

Experimente mit virtueller Realität

Obwohl das Verhaltensspektrum von Zebrafischlarven im Vergleich zu manch anderen Wirbeltier-Ordnungen eher begrenzt ist, ist die dem Verhalten zugrundeliegende Kleinhirn-Struktur bei allen vergleichbar. Die Zebrafischlarve, mit ihrem kleineren Gehirn und den verfügbaren experimentellen Methoden ist daher ein ideales Modell um grundlegende Funktionen und Arbeitsweisen des Wirbeltier-Kleinhirns zu verstehen. Als nächsten Schritt auf diesem Weg wollen die Wissenschaftler der Portugues-Gruppe untersuchen, wie Körnerzellen dem Zebrafisch helfen, Bewegungen in Echtzeit zu koordinieren. Hierfür entwickeln die Forscher gerade Experimente mit virtueller Realität, in denen sich die Umgebung abhängig von den Bewegungen der Fische verändern kann. (idw, red)

Literatur:

Laura D. Knogler, Daniil A. Markov, Elena I. Dragomir, Vilim Stih, Ruben Portugues:
Sensorimotor representations in cerebellar granule cells in zebrafish are dense, spatially organized, and non-temporally patterned. Current Biology, 20. April 2017.

Artikel teilen

Online-Angebot der MT im Dialog

Um das Online-Angebot der MT im Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige in der MT im Dialog schalten?

Stellenmarkt
Industrieanzeige