Der Regulation des Gens BRCA1 auf der Spur

Brustkrebs
lz
Brustkrebsauslöser
Gesunde Zelle mit korrekter Chromosomenzahl (links). Krebszelle mit inaktiviertem BRCA1 und abnormaler Chromosomenzahl (rechts). umg/Bastians
Newsletter­anmeldung

Bleiben Sie auf dem Laufenden. Der MT-Dialog-Newsletter informiert Sie jede Woche kostenfrei über die wichtigsten Branchen-News, aktuelle Themen und die neusten Stellenangebote.


Krebsforscher der UMG entdecken grundlegende Regulationsmechanismen des Brustkrebsgens BRCA1: Hemmung der Funktion nicht nur durch Mutationen des Gens, sondern auch genetische Veränderungen von anderen Krebs-relevanten Genen möglich.

Vererbte Mutationen des Gens BRCA1 gelten als Indiz für ein erhöhtes Risiko, an familiär vererbtem Brustkrebs zu erkranken. Nicht-vererbte BRCA1-Mutationen können darüber hinaus das Risiko auch für andere Tumorarten, wie Prostata-, Magen-, Bauchspeicheldrüsen- und Darmkrebs, erhöhen. Obwohl das BRCA1-Gen offenbar eine wichtige Rolle bei der Krebsentstehung spielt, ist bisher sehr wenig darüber bekannt, wie die Aktivität von BRCA1 gesteuert wird.

Einem Göttinger Forscherteam unter Leitung von Prof. Dr. Holger Bastians, Institut für Molekulare Onkologie der Universitätsmedizin Göttingen (UMG) und Göttinger Zentrum für Molekulare Biowissenschaften (GZMB) der Universität Göttingen, ist es gelungen, neue Erkenntnisse über die Regulation von BRCA1 zu gewinnen. Die Wissenschaftler konnten zeigen, dass eine funktionelle Inaktivierung des Gens BRCA1 zu einer fehlerhaften Verteilung von Chromosomen während der Zellteilung führt. Eine solche chromosomale Instabilität trägt entscheidend dazu bei, dass sich Tumorzellen fortwährend genetisch verändern.

Bei ihren Untersuchungen zur Regulation dieser neuen BRCA1-Funktion identifizierten die Forscher gleich mehrere neue Krebsgene, die die Funktion entweder aktivieren oder hemmen. „Das Wichtige an dieser Entdeckung ist, dass genau diese Gene in Tumoren häufig fehlen oder übermäßig aktiv sind, die selbst keine BRCA1-Genmutation tragen. Somit führen genetische Veränderungen in diesen neu identifizierten Genen zum gleichen Ergebnis, nämlich einer Ungleichverteilung der Chromosomen auf die Tochterzellen, wie eine Mutation des BRCA1-Gens“, sagt Prof. Dr. Bastians, Leiter des Göttinger Forscherteams.

Die neuen Erkenntnisse können helfen zu verstehen, warum Brust- oder auch andere Krebsarten entstehen können, auch wenn das Gen BRCA1 nicht verändert ist. Die neue Studie gibt zudem neue Anhaltspunkte dafür, dass BRCA1-Mutationen keinesfalls allein für ein erhöhtes Brustkrebsrisiko verantwortlich sind.

BRCA1 und seine Funktion bei der Zellteilung

Prof. Bastians und sein Team befassen sich bereits seit einigen Jahren mit der Funktion von BRCA1 in menschlichen Tumorzellen. Dabei konnten sie in ihren Arbeiten unter anderem zeigen, dass ein funktionales BRCA1 wichtig ist, um eine Zellteilung ordnungsgemäß und korrekt ablaufen zu lassen. Fehlt das Gen BRCA1 oder ist dessen Funktion gestört, kommt es zu ungewünschten Anhäufungen von Chromosomenschäden und zu abnormalem Chromosomengehalt, den sogenannten Aneuploidien. Sie können entscheidend sein für die Entstehung und die Entwicklung von Krebs, weil sie die genetische Anpassungsfähigkeit von Tumorzellen erhöhen.

Bei der Zellteilung wird die Erbinformation gleichmäßig auf die entstehenden zwei Tochterzellen verteilt. Dieser Vorgang ist von zentraler Bedeutung, um genetisch identische Nachfolger-Zellen zu erzeugen. Das Gen BRCA1 erfüllt dabei eine wichtige Funktion in der Regulation der Mikrotubuli-Fasern, die in der Mitose die Verteilung der Chromosomen koordinieren. Um mehr über die Regulation dieser Funktion herauszufinden, suchte das Forscherteam von Prof. Bastians gezielt nach Proteinen, die während der Zellteilung an BRCA1 binden. In Zusammenarbeit mit Prof. Dr. Gerhard Braus und Dr. Oliver Valerius vom Institut für Mikrobiologie und Genetik der Universität Göttingen konnten sie mit Hilfe von Massenspektroskopie mehrere solcher Proteine finden, die zudem die BRCA1-Funktion bei der Chromosomenverteilung regulieren.

Regulation im Netzwerk mit indirekter Inaktivierung

Zwei Proteine, das AURORA-A Onkogen und die Protein-Phosphatase PP6, analysierten die Forscher genauer. „Diese Kandidaten waren besonders interessant, weil sie, genau wie BRCA1, auch häufig in Tumoren verändert sind“, sagt Dr. Norman Ertych, Erstautor. In weiteren biochemischen und zellbiologischen Experimentreihen stellte sich heraus: Das Onkogen AURORA-A kann die Funktion von BRCA1 durch direkte Modifikation hemmen. Die Protein-Phosphatase PP6 wiederum ist in der Lage, die Aktivität von AURORA-A zu hemmen. PP6 kann auf diese Weise – quasi indirekt – einen positiven Einfluss auf die BRCA1-Funktion nehmen.

Die Göttinger Forscher konnten somit zeigen, dass ein Netzwerk von BRCA1-Regulatoren existiert, das insgesamt für die ordnungsgemäße Aktivität des BRCA1-Proteins verantwortlich ist. Kommt es zu genetischen Veränderungen innerhalb dieses Netzwerks, kann dies zu einer funktionellen Inaktivität von BRCA1 führen. Die mögliche Folge: Tumoren entstehen oder schreiten voran – und zwar auch in Fällen, in denen das Gen BRCA1 selbst gar nicht genetisch verändert ist.

„Unsere Forschungsergebnisse haben wichtige Auswirkungen für die Diagnose von Krebs. Die alleinige Entdeckung von BRCA1-Mutationen reicht nicht aus, um die Funktionalität von BRCA1 zu erkennen. Daher sollten zumindest die Gene des von uns entdeckten BRCA1-Netzwerks bei der genetischen Diagnose mitberücksichtigt werden", sagt Prof. Bastians. (idw, red)

Hintergrundinformation:

BRCA1 (steht für: BReast CAncer 1) wurde bereits vor gut 20 Jahren als ein Tumorsuppressor-Gen entdeckt, das vor allem bei familiär vererbten Brust- und Eierstockkrebs häufig mutiert ist. Das Risiko einer Frau, an Brustkrebs zu erkranken, liegt bei Vorhandensein einer BRCA1-Mutation bei etwa 50 bis 80 Prozent, das Risiko für Eierstockkrebs bei zehn bis 40 Prozent. Dies ist der Grund, warum Frauen, bei denen eine BRCA1-Mutation nachgewiesen wurde, sich dazu entschließen, vorbeugend eine Brustamputation vornehmen zu lassen. Prominentes Beispiel einer Patientin mit BRCA1-Mutation, die sich für diesen Weg entschieden hat, ist die Filmschauspielerin Angelina Jolie. 

Literatur:

Norman Ertych, Ailine Stolz, Oliver Valerius, Gerhard H. Braus, Holger Bastians: The CHK2-BRCA1 tumor suppressor axis restrains oncogenic AURORA-A to ensure proper mitotic microtubule assembly. Proceedings of the National Academy of Sciences USA PNAS 2016; DOI:10.1073/pnas.1525129113

Artikel teilen

Online-Angebot der MT im Dialog

Um das Online-Angebot der MT im Dialog uneingeschränkt nutzen zu können, müssen Sie sich einmalig mit Ihrer DVTA-Mitglieds- oder Abonnentennummer registrieren.

Stellen- und Rubrikenmarkt

Möchten Sie eine Anzeige in der MT im Dialog schalten?

Stellenmarkt
Industrieanzeige